Search results for "Galvanic Deposition"

showing 10 items of 20 documents

Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

2016

In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were char…

Calcium PhosphatesMaterials scienceGalvanic anodeScanning electron microscopeMaterials ScienceEnergy-dispersive X-ray spectroscopyBioengineering02 engineering and technologyCondensed Matter Physicengineering.material010402 general chemistry01 natural sciencesCorrosionHydroxyapatiteBiomaterialssymbols.namesakeCoatingGalvanic cellBrushiteMechanical EngineeringMetallurgyBiomedical applicationElectrochemical Techniques021001 nanoscience & nanotechnologyStainless Steel0104 chemical sciencesGalvanic depositionDurapatiteSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringMechanics of Materialsengineeringsymbols316LSSBrushite0210 nano-technologyRaman spectroscopy
researchProduct

Co-deposition and characterization of hydroxyapatite-chitosan and hydroxyapatite-polyvinylacetate coatings on 304 SS for biomedical devices

2019

During the last decades, biomaterials have been deeply studied to fabricate and improve coatings for biomedical devices. Metallic materials, especially in the orthopedic field, represent the most common materials used for different type of devices thanks to their good mechanical properties. Nevertheless, low/medium resistance to corrosion and low osteointegration ability characterizes these materials. To overcome these problems, the use of biocoatings on metals substrate is largely diffused. In fact, biocoatings have a key role to confer biocompatibility features, to inhibit corrosion and thus improve the lifetime of implanted devices. In this work, the attention was focused on Hydroxyapati…

CorrosionChitosanGalvanic depositionOrthopedic implantSettore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/23 - Chimica Fisica Applicata304 stainless steelSettore BIO/10 - BiochimicaPolyvinyl acetateSettore ING-IND/34 - Bioingegneria IndustrialeCytocompatibilityHydroxyapatite
researchProduct

Galvanic deposition of Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel

2021

The galvanic deposition method was used to deposit Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel. Galvanic deposition is an alternative and valid way to fabricate bio-coatings with high biocompatibility and good anticorrosion properties. Physical-chemical characterizations were carried out to investigate chemical composition and morphology of the samples. Coatings consist of a mixture of calcium phosphate (Brushite and Hydroxyapatite) with chitosan and collagen. Corrosion tests were performed in the simulated body fluid (SBF) after different aging times. Results show that, in comparison with bare 304 stainless steel, coating shifts corrosion potential to anodic values and…

Galvanic depositionSettore ING-IND/23 - Chimica Fisica Applicata304 stainless steelbio-coatingHydroxyapatite/Chitosan/Collage
researchProduct

Galvanic Deposition of Hydroxyapatite/Chitosan/Collagen Coatings on 304 Stainless Steel

2021

The galvanic deposition method was used to deposit Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel. Galvanic deposition is an alternative and valid way to fabricate bio-coatings with high biocompatibility and good anticorrosion properties. Physical-chemical characterizations were carried out to investigate chemical composition and morphology of the samples. Coatings consist of a mixture of calcium phosphate (Brushite and Hydroxyapatite) with chitosan and collagen. Corrosion tests were performed in the simulated body fluid (SBF) after different aging times. Results show that, in comparison with bare 304 stainless steel, coating shifts corrosion potential to anodic values and…

Hydroxyapatite Chitosan Collagen Biocoating Corrrosion Galvanic deposition Cytotoxicity 304SS stainless steel
researchProduct

A Route to Grow Oxide Nanostructures Based on Metal Displacement Deposition: Lanthanides Oxy/Hydroxides Characterization

2012

LanthanideNanostructureMaterials scienceRenewable Energy Sustainability and the EnvironmentInorganic chemistryOxideCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCharacterization (materials science)Metalchemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica Applicatachemistryvisual_artMaterials ChemistryElectrochemistryvisual_art.visual_art_mediumDeposition (phase transition)Metal oxide template synthesis lanthanide oxide anodic allumina membrane galvanic depositionDisplacement (fluid)
researchProduct

Nanostructures of different oxides/hydroxides grown in nanoporous templates by electrochemical methods.

2011

METAL OXIDE OXIDES/HYDROXIDES GALVANIC DEPOSITION LANTHANIDE OXIDESettore ING-IND/23 - Chimica Fisica Applicata
researchProduct

Chitosan-Coating Deposition via Galvanic Coupling

2019

A galvanic method to deposit chitosan coatings on stainless steel substrate is reported. Deposition of suitable coatings is desired to improve biocompatibility and corrosion resistance of metallic medical devices to be implanted in human body. In the present work, a thin hydrogel layer of chitosan was deposited on 304SS by a galvanic displacement reaction, which is advantageous first as it does not require external power supply. 304SS was immersed into an aqueous solution of chitosan/lactic acid and electrochemically coupled with magnesium acting as a sacrificial anode. SEM images showed the formation of a uniform layer of chitosan with a thickness controlled by deposition time. Corrosion t…

Materials scienceBiocompatibilityGalvanic anodegalvanic deposition0206 medical engineeringBiomedical Engineeringmacromolecular substances02 engineering and technologyengineering.materialCorrosionBiomaterialsChitosanchemistry.chemical_compoundCoatingGalvanic cellSettore ING-IND/24 - Principi Di Ingegneria ChimicaAqueous solutiontechnology industry and agriculturemedical devices biomaterialbiocoatingSettore ING-IND/34 - Bioingegneria Industriale021001 nanoscience & nanotechnology020601 biomedical engineering304SS stainless steelBiomaterialSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringengineeringcytotoxicitychitosan0210 nano-technologyLayer (electronics)
researchProduct

Calcium phosphate/polyvinyl acetate coatings on SS304 via galvanic co-deposition for orthopedic implant applications

2021

Abstract In this work, the galvanic deposition method is used to deposit coatings of brushite/hydroxyapatite/polyvinyl acetate on 304 stainless steel. Coatings are obtained at different temperatures and with different sacrificial anodes, consisting of a mixture of brushite and hydroxyapatite. Samples are aged in a simulated body fluid (SBF), where a complete conversion of brushite into hydroxyapatite with a simultaneous change in morphology and wettability occurred. The corrosion tests show that, compared with bare 304, the coating shifts Ecorr to anodic values and reduces icorr Ecorr, and icorr has different values at different aging times due to chemical interactions at the solid/liquid i…

Materials scienceGalvanic anodeCytotoxicitySimulated body fluidPolyvinyl acetate02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesHydroxyapatiteCorrosionchemistry.chemical_compoundCoatingMaterials ChemistryGalvanic cellBrushiteOrthopedic implantsSettore ING-IND/24 - Principi Di Ingegneria ChimicaPolyvinyl acetateSettore ING-IND/34 - Bioingegneria IndustrialeSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsAnodeCorrosionGalvanic depositionSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryengineering0210 nano-technologySurface and Coatings Technology
researchProduct

Anodic alumina membranes: from electrochemical growth to use as template for nanostructure fabrication

2009

NanowireNanotubeAnodic Alumina MembraneSettore ING-IND/23 - Chimica Fisica ApplicataElectrodepositionElectroless depositionAnodizationGalvanic Deposition
researchProduct

Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water

2020

Contamination of water with nitrate ions is a significant problem that affects many areas of the world. The danger from nitrates is not so much their toxicity, rather low, as their transformation into nitrites and in particular into nitrosamines, substances considered to be a possible carcinogenic risk. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/l. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performed in situ. Electrochemical detection is certainly among the best techniques to obtain the above requirements. In…

Nitrate ionMaterials scienceInorganic chemistrychemistry.chemical_element02 engineering and technology01 natural sciencesChlorideAnalytical ChemistryIonCopper nanowireschemistry.chemical_compoundNitrateSettore ING-IND/17 - Impianti Industriali MeccaniciChlorinemedicineSolubilityDetection limitPrecipitation (chemistry)010401 analytical chemistry021001 nanoscience & nanotechnologyCopperNanostructures0104 chemical sciencesElectrochemical gas sensorGalvanic depositionSettore ING-IND/23 - Chimica Fisica ApplicataElectrochemical sensorchemistry0210 nano-technologyWater contaminationmedicine.drugTalanta
researchProduct